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of reference 1 referring to the connection between the relation referred to
in that paper by A and our present C is not quite correct without further
restriction.)
LEMMA. If T satisfies (C) and for every t1 e S2 there exists a sequence of

functions WN in C(S1) possibly dependent on the choice of t1 such that (TWN)
(t1) -- o and if ixy It = 0 then T is multiplicative on xy.
Suppose IYIt = 0 then

I((Txy- TXTy)TwN)(t1)I < A((xy)wN) + A(X(YWN)) + ITx(TwN-
TyTwN)II < e (2 + IITxll).

In short |(Txy - Tx Ty)(ti)I < e (2 + IITxII)/I(TwN)(tl)I -O 0.
THEOREM 5. If T satisfies C and is 1 - 1 on C(S1) onto C(S2) then SI

and S2 are homeomorphic.
Indeed since the mapping is "onto" the sequence WN exists for every

choice of t1 in S2 and hence IxyI = 0 implies Txy = Tx Ty. Theorem
4 now guarantees T is actually multiplicative and our result follows from
Theorem 6 of reference 1 or from reference 3.

1 Bourgin, D. G., "Approximately Isometric and Multiplicative Transformations
on Continuous Function Rings," Duke Math. J., 16, 385-397 (1949).

2 Kakutani, S., "Concrete Representation of Abstract M Spaces," Ann. Math., 42,
994-1024 (1941).

3 Milgram, A. N., "Multiplicative Semigroups of Continuous Functions," Duke
Math. J., 16, 377-383 (1949).

EXTENSIVE GAMES*

By H. W. KUHN

PRINCETON UNIVERSITY

Communicated by J. von Neumann, July 31, 1950

In the mathematical theory of games of strategy as described by von
Neumann and Morgenstern,1 the development proceeds in two main
steps: (1) the presentation of an all-inclusive formal characterization of a
general n-person game, (2) the introduction of the concept of a pure
strategy which makes possible a radical simplification of t,his scheme,
replacing an arbitrary game by a suitable prototype game. These two
forms have been given technical names by von Neumann and Morgenstern,
who called them the extensive and the normalized forms of a game. As
they have noted, the normalized form is better suited to the derivation of
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general theorems (e.g., the main theorem of the zero-sum two-person
game), while the extensive form exposes the characteristic differences
between games and the decisive structural features which determine those
differences. Since all games are found in extensive form, while it is
practical to normalize but a few, it seems reasonable to attack the com-
pletion of a general theory of games in extensive form. This note presents
two new results in this theory which appear to have far-reaching conse-
quences in the computational problems of normalized games. These
results are cast in terms of a new formulation of the extensive form which
seems to have intuitive advantages over that used by von Neumann.2

In order to engage in a precise discussion, it will be necessary to clarify
certain concepts associated with a game which are confused and ambiguous
in common use. We will use these terms in essentially the same manner
as von Neumann and Morgenstern. A game is simply the set of rules
which define it, while every particular instance in which a game is played
from beginning to end is called a play of that game. A similar distinction
is drawn between the occasion of the selection of one among several alter-
natives, to be made by one of the players or by some chance device, which
is called a move and the actual selection in a particular play which is called
a choice. Thus, a game consists of a set of moves in some order (not
necessarily linear!), while a play consists of a sequence of choices.

1. The Extensive Form.-
Definition: A general n-person game r is a finite tree K imbedded in

an oriented plane with the following specifications:
(1) A distinguished vertex 0.
(Terminology: The -alternatives at a vertex P are the edges e incident

to P and lying in components not containing 0 if we cut K at P. If there
are j alternatives at P, then we index these by the integers 1, . . ., j, circling
P in the positive sense. At the vertex 0, the first alternative may be as-
signed arbitrarily. If we circle a vertex P # 0 in the positive sense,
the first alternative follows the unique edge at P which is not an alterna-
tive. Those vertices which possess alternatives will be called moves; the
remaining vertices will be called plays. We define a partition3 of the
moves into sets A , j = 1, 2, . . ., where A j contains all of the moves withj
alternatives, which will be called the alternative partition. ,
We also introduce a temporal order in the tree K. As in any tree with

base point 0, there is a uniquely defined unicursal path Wp leading from
0 to the vertex P. We say that P . Q whenever P e WQ. This clearly
defines a partial ordering of the vertices of K and enables us to assign a
(temporal) rank to the vertices as follows: 0 is of rank 1. A vertex P
is of rank k if the maximum of the rank of Q such that Q < P is k - 1.
Using this definition we can introduce the rank partition of the moves into
sets Mk consisting of all moves of rank k for k = 1, 2, ....)
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(2) A partition of the moves into n + 1 indexed sets Po, P1, ...,P
which will be called the player partition.

(Terminology: The moves lying in Po are called chance moves; all other
moves are called personal moves.)

(3) A partition of the moves into sets U which is a refinement of the
alternative, player and rank partitions, that is, each U is contained in
pAn A n Mk for some i, j and k. This partition is called the information
partition and its sets will be called information sets.

(4) For each U c Po n Aj, a probability distribution on the integers
1, . . ., j, which assigns positive probability to each. Such U are assumed
to be one-element sets.

(5) An n-tuple of real numbers h(W) = (h1(W), ..., h,,(W)) for each
play W.

(Terminology: The function h specified in (5) is called the pay-off
function.)
The question which must be answered immediately is: How is this formal

scheme to be interpreted? That is, how does one play our general n-person
game r? To personalize the interpretation, one may imagine a number
of people isolated from each other with contact with a single person, termed
the umpire. All persons involved are supposed to know the rules of the
game; that is, each is to have a copy of the tree K and the specifications
(1)-(5). We assume that there is one person for each information set
and that they are grouped into players in the natural manner, a person
belonging to the ith player if his information set lies in Pi. This seeming
plethora of persons is occasioned by the possibly complicated state of
information of our players who may be called upon to forget facts which
they knew earlier in a play.4
A play begins at the vertex 0. We do not exclude the possibility that

this is the only vertex in K; then we have a no-move game, no one does
anything and the pay-off is h(O) = (hi(O),. . . h.(0)). Suppose that the
play has progressed to the move P. Then the play continues by the
umpire contacting the person whose information set contains P and, if
P is a personal move with j alternatives, asking him to choose a positive
integer not greater than j. The person does this, knowing only that he
is choosing an alternative at one of the moves in his information set. We
assume that the umpire makes all of the chance choices in advance, in
accord with the probabilities assigned in (4), so that if P is a chance move
then an alternative has already been chosen. In this manner, a path
with initial point 0 is constructed. It is unicursal and hence leads to a play
W. (Henceforth we shall utilize the 1-1 correspondence between the plays,
which are vertices, and the unicursal paths from 0 to the plays and use the
name play for both objects when no confusion will result.) At this point,
the umpire pays player i the amount hi(W) for i = 1, ..., n.
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A detailed comparison of our formal scheme and von Neumann's axio-
matic formulation5 reveals that if we derive one of our games from a von
Neumann game in a natural way the only condition imposed is that all of
the plays be of the same rank. This is essentially trivial and can be
satisfied by filling out "short" plays with dummy chance moves with only
one alternative. Proceeding in the converse direction, if we take one of
our games in which all of the plays have the same rank, we impose the
single restriction that all of the plays in Q be admissible under the rules of
r. Thus we have axiomatized essentially the same set of objects as
von Neumann.

2. Pure, Mixed and Behavior Strategies.-Rather than make each
decision separately as the occasion demands, a player may devise a plan
in advance to cover all possible situations which may confront him. He
loses nothing by doing this since he makes his choice a function of the
information available to him; consequently, his choice must be constant
over each of his information sets. Such a plan is called a pure strategy.

Definition: A pure strategy 7rj for player i in r is a choice of a positive
integer not greater than j for each set U c Pi n A,.

If the players choose pure strategies ri, . . ., 7n then a probability p6 is
assigned to each alternative e in the graph K; if e is a chance alternative,
then p6 is obtained from specification (4), while if e is the vth alternative at a
personal move in Pi then pe = 1 if 7ri specifies the choice v on the set U
containing this move and pe = 0 otherwise. Clearly, the probability
PW(rl, ... , 7rn) that a play W will occur is given by the formula:

Pw(irb, .., 7rn) = II Pe(iri1 ... X 7rn) (6)
ee W

and hence the expected pay-off to player i is given by

Hi(7r1, * 7n) = E Pw(7r, *.., 7rn)hi(). (7)
w

Unfortunately, our definition of a pure strategy, while conceptually
simple, has an inherent redundancy which we will now eliminate. This
redundancy is simple in nature; in the case of a zero-sum two-person
game, it is merely the duplication of rows and columns in the pay-off
matrix.

Definition: We shall say that two pure strategies for player i are equiva-
lent, written r1 == 7rt, if and only if Pw(7ri, ..., 7r, ..., Tn) = Pw(r,l .
7ri . 7..rn) for all plays W and all pure strategies for the remaining players,
7rl, . . ., 1ri-1, 7+l, - -. , rn

The following definition provides the working criterion for the equiva-
lence of pure strategies.
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Definition: A personal move P for player i is called possible when playing
7r- if there exists a play W and pure strategies for the remaining players
T7i, .* X 7ri-,i 7ri+1, .. ., 7rn such that Pw(7ri, . ., uri, .. ., r,rn) > OandP e W.

Criterion: The pure strategies 7rw and r' are equivalent if and only if
they have the same set of possible moves and specify the same choices on
those moves.

Henceforth, when we speak of a pure strategy, we shall mean an equivalence
class under the definition just given. Clearly, formulae (6) and (7) still
hold, where if e is an alternative specified by a pure strategy on an in-
formation set containing a possible move then pe = 1 and Pe = 0 otherwise.

However, the simplest games (e.g., Matching Pennies) reveal that a
player is at a disadvantage if he uses the same pure strategy in each play.
Instead, he can use a probability distribution i on his pure strategies which
we will call a mixed strategy. Now let 7rT appear in the mixed strategy
,ui with probability q,i. Then the probability that a given play W will
result is:

PW(Ab . An) q= q,1-- .Pw(7r,, * 7-- n) (8)

and the expected pay-off to player i is given by

Hi(Ab,.A. .,n) = Pw(b. n)hi(W
w

(9)
= q.. .,qr Hi(7ri, 7*,n).

Tj1 ...,Prn

In solving games in normalized form it has been customary to deal with
the mixed strategies just introduced. However, instead of mixing pure
strategies, a player could specify a probability distribution over the
alternatives in each information set and thus plan his action in any given
play. We will call the aggregate of such distributions a behavior strategy.
The advantage of dealing with behavior strategies is a radical reduction
of the dimension of the sets involved while the obvious disadvantage
derives from a loss of freedom of action. Behavior strategies have been
used with telling effect in the solution of individual games by von Neu-
mann,6 J. Nash and L. S. Shapley,7 and the author.8 In our formal treat-
ment we will only deal with behavior strategies which are derived from a
mixed strategy.

Definition: Suppose that the mixed strategy 'i assigns the probability
q1. to each pure strategy ri and consider the information set U for player
i with j alternatives. Let S be the set of pure strategies 7r1 such that some
P e U is possible when playing Ti. Then S is the disjoint union of the
sets S,, . ., Sj where S, consists of all Tri which specify the vth alternative
on U. If E qgt 0 then we define:

irEf b
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bv= Eq'i / q,. for= 1, j. (10)
JWi eS, /rte St

If E q,., = 0 then no distribution is defined. The aggregate of all such
iri S

assignments on information sets U for player i is called the behavior strategy
associated uith JSg and is denoted by #j(;zj) or simply ,fl.

Again, if the players choose behavior strategies ,Bi, . . .,In then a proba-
bility Pe is assigned to each alternative e in the graph K; if e is a chance
alternative, then p. is obtained from specification (4), while if e is the
vth alternative at a personal move in Pi at which ,8 assigns the probability
b, then p6 = b, and pc = 0 otherwise. Clearly, the probability Pw(5i,
. ) that a play W will occur is given by the formula:

Pw(il.*-, A5n) = ] Pe(l, ...e, On) (11)
cow

and hence the expected pay-off to player i is given by

Hi(l, ...
* *,n) E pw(fli ... **ln)hj(W). (12)

w

3. Games with Perfect Information and Games with Perfect Recall.
We shall be concerned with two large classes of games in which the in-
formation partition assumes a special form.

Definition: A game r is said to have perfect information" if the informa-
tion partition consists of one-element sets.

Definition: A game r is said to have perfect recall for plkyer i if, for all
pairs of moves P, Q for player i such that P < Q, we have the following
condition satisfied. Assume that P and Q lie in the information sets U
and V, respectively. Let P have j alternatives and let V, be the set of
all moves following some R e U in the temporal order in a play which has
the vth alternative at R. Then we demand that V c V, for some v. A
game r is said to have perfect recall if it has such for all players.
The interpretation of these terms is exactly what the names imply.

In a game with perfect information, each player is informed at every move
of the exact sequence of choices preceding that move. In a game with per-
fect recall each player remembers everything that he knew and all of his
choices at previous moves. The following two theorems hold for such
games.
THEOREM 1. A sufficient condition that an n-person game r have an

equilibrium point10 among the pure strategies for all possible assignments of
the pay-off function h is that r have perfect information.
THEOREM 2. A necessary and sufficient condition that

Hi(#(.ul), ...,qn(jSn)) = Hi(jil, ..., 1.*)
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for all mixed strategies Al, . ., ,, and i = 1, . . ., n in an n-person game r
for all possible assignments of the pay-offfunction h is that r have total recall.

Theorem 1 generalizes the theorem of von Neumann which asserts that
a zero-sum two-person game with perfect information is strictly deter-
mined. It is proved by the same inductive device with a slight variation
due to the absence of the minorant and majorant games in the general
n-person case. Theorem 2 enables us to replace mixed strategies by
behavior strategies in games with total recall and has many computational
ramifications. The proofs of both of the theorems and further considera-
tions of extensive games will be published elsewhere.

* Written under a contract with the Office of Naval Research.
1 Neumann, J. von, and Morgenstern, O., The Theory of Games and Economic Be-

havior, 2nd ed., Princeton University Press, 1947.
2 A graphical representation by a tree has been suggested by von Neumann, loc. cit.,

p. 77, however he does not treat this matter systematically, preferring a set theoretical
formulation.

8 In this paper a partition means an exhaustive decomposition into (possibly void)
disjoint sets.

4 It has been noted by von Neumann that Bridge is a two-player game in exactly
this manner.

Neumann, J. von, and Morgenstern, O., loc. cit., pp. 67-84.
6 Neumann, J. von, and Morgenstern, O., loc. cit., pp. 192-194.
' Nash, J., and Shapley, L., "A Simple Three-Person Poker Game," Annals of

Mathematics, Study No. 24 (in preparation).
8 Kuhn, H., "A Simplified Two-Person Poker," Ibid., Study No. 24 (in preparation).
9Neumann, J. von, and Morgenstern, O., loc. cit., p. 51.

10 Nash, J., "Equilibrium Points in n-Person Games," these PROCEEDINGS, 36, 48-49
(1950).

THE SPECIFICITY OFANTI-KIDNE YANTIBOD YDETERMINED
B Y ITS EFFECT UPON TISSUE CULTURE EXPLANTS

BY RICHARD W. LIPPMAN, GLADYS CAMERON AND DAN H. CAMPBELL
INSTITUTE FOR MEDICAL RESEARCH, CEDARS OF LEBANON HOSPITAL, Los ANGELES,
CALIFORNIA, AND THE GATES AND CRELLIN LABORATORIES OF CHBEMISTRY, * CALIFORNIA

INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIAt

Communicated by Linus Pauling, August 1, 1950

While investigating the pathogenesis of experimental nephritis produced
by rabbit anti-rat-kidney antibody, it occurred to us that the effects of anti-
kidney antibody on kidney tissue might readily be visualized in tissue cul-
tures. The specificity of tissue antigens has previously been investigated
by the usual immunologic procedures' and the effects of antibodies2' I

upon tissue explants has long been known. The growth and function of
tissue explants have previously been used to study the specificity of tissue
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